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abstract

We develop a microstructure model that, in contrast to previous models, allows
one to estimate the frequency and quality of private information. In addition, the
model produces stationary asset price and trading volume series. We find
evidence that information arrives frequently within a day and that this informa-
tion is of high quality. The frequent arrival of information, while in contrast to
previous microstructure model estimates, accords with nonmodel-based esti-
mates and the related literature testing the mixture-of-distributions hypothesis.
To determine if the estimates are correctly reflecting the arrival of latent informa-
tion, we estimate the parameters over half-hour intervals within the day. Com-
parison of the parameter estimates with measures of persistent price changes
reveals that the estimates reflect the arrival of latent information.

keywords: asymmetric information, high-frequency econometrics

An attraction of market microstructure models is that they allow one to assess the

empirical importance of private information in security markets. The asymmetric
information model developed by Glosten and Milgrom (1985) to explain the

presence of bid-ask spreads over a single trading period was extended to multiple

trading periods by Easley and O’Hara (1992). With a model of multiple trading

periods, succeeding articles estimated the impact of privately informed traders

on price determination [see Easley et al. (1996), Easley, Kiefer, and O’Hara

(1997), Easley, O’Hara and Saar (2001), Hanousek and Podpiera (2002), and

Kelly and Steigerwald (2004)]. While certain features of informed traders are

estimable from the model, both the frequency of (private) information arrival
and the accuracy of information must be assumed. As the above mentioned

empirical papers assume that information arrives at most once per day, while

estimates obtained directly from buy and sell order flows [Hasbrouck (1999)]

find that information arrives many times within a day, misspecification bias of

the microstructure estimates is a very real possibility. We address these issues
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with a model that allows us to estimate both the frequency and the quality of

private information.

The microstructure model of Easley and O’Hara is inherently nonstationary,

as the potential arrival of information occurs at fixed (and known) points in time.
Estimation of the model requires that the researcher specify the fixed intervals

that correspond to the arrival of information. Typically researchers assume that

information potentially arrives at the beginning of each trading day, thereby

limiting the frequency of information arrival to once per day. Such an assumption

is in contrast not only to the findings of Hasbrouck, but also to the assumption

that underpins research about the mixture-of-distributions hypothesis (MDH).

Empirical assessment of the MDH, which describes the distribution of security

prices arising from the presence of informed traders, is typically based on the
assumption of many information arrivals within a day [e.g., Andersen (1996)]. We

address the issue by constructing a model (of the type in Easley and O’Hara) in

which information arrives randomly throughout each trading day (in so doing,

the model is stationary as well). As a result, the length of time over which

information persists is random, in accordance with the different types of informa-

tion that enter asset markets.

In addition, we allow for information of varying accuracy. In the model of

Easley and O’Hara, information is perfect by assumption. Yet it may be the case
that not all information is created equally. We address this issue by explicitly

modeling the belief a trader has in the accuracy of information.1 By allowing the

quality of information to vary, we also address another issue. In Easley and

O’Hara, the group of informed traders all receive (perfect) information simulta-

neously. The potential for strategic behavior by the informed is eliminated

through the random arrival of traders.2 While eliminating strategic behavior,

the mechanism imparts perfect correlation at the microstructure level, as the

information received by one informed trader is the same as the information
received by the next informed trader. By allowing the quality of news to vary,

we are able to estimate the correlation of private information and so more

accurately gauge the impact of information on stochastic volatility in asset prices.

In Section 1, we present the asymmetric information microstructure model

for a security market. A period of asymmetric information ends with the arrival of

public news. (Not all news about the asset is privately revealed, with positive

probability public news will not have been previously revealed to informed

traders.) Following each public news arrival is the possible arrival of (private)
information. The parameter governing the public news arrival process determines

the average length of time over which informed traders exploit their information

and contributes to the frequency of information arrivals. We capture the varying

accuracy of information through a Markov transition matrix that governs the

probability that a given information signal to a trader will be publicly revealed

(and hence, accurate). The model is flexible enough to allow information accuracy

1 Damodaran (1985) shows how the accuracy of information affects the variance of returns.
2 Kyle (1985) considers the strategic behavior of a single informed trader.
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to depend on whether the information reflects positively or negatively on the

asset price.

We detail how to estimate the model in Section 2. As the fundamental data

are the latent individual trade decisions, we first describe how to construct an
observable sequence of decisions. To do so one must specify how frequently

traders arrive to the market. Easley, Kiefer, and O’Hara (1997) assume that the

arrival frequency is fixed over time (with a trader arriving every five minutes).

Unfortunately such a specification does not accommodate the fact that trading

intensity varies in predictable ways over the course of a day. To allow for these

periodic effects, and so distinguish episodes of trading that follow from informa-

tion arrival, we vary the arrival rate of traders over the course of a day. We also

study the bias that arises from misspecification of the arrival rate and establish
that the bias vanishes as the assumed arrival frequency grows. Given the

sequence of trade decisions, the likelihood function is formed from the probabili-

ties of each trade as governed by the model. We note that maximum-likelihood

estimation of the model of Easley and O’Hara (1992) implicitly conditions on the

assumed frequency of information arrival and then detail the construction of the

likelihood function for the model with the estimated frequency of information

arrival. With the additional parameters, we are careful to distinguish between the

information set of the market specialist and that of the econometrician, because
the specialist has the additional knowledge of the timing of public news arrivals.

An empirical investigation of the impact of informed traders on a security

market is contained in Section 3. We first focus on 2001 data for three firms of

varying liquidity that trade on the New York Stock Exchange (NYSE). We esti-

mate the frequency and accuracy of private information and find evidence that

private information potentially arrives many times within a day, in accord with

the findings of Hasbrouck (1988) and empirical analysis of the MDH. To link our

work to previous work by Foster and Viswanathan (1993) and Madhavan,
Richardson, and Roomans (1997), who study intraday effects, we estimate the

model separately for each half hour of the trading day. With an expanded dataset

of Dow Jones firms for all of 2002, we find that informed trading is most pro-

nounced early in the day, in accord with earlier findings. To check if the model is

capturing information arrivals rather than correlated arrivals of trades for other

reasons, we check for comovement between weighted-price contributions and the

estimates of informed trade. Weighted-price contributions, devised by Barclay

and Hendershott (2003), measure the persistent impact of price changes within a
period. As persistent price changes provide evidence of informed trading, our

finding of substantial comovement reveals that the informed trade estimates

capture the arrival of latent information.

1 MICROSTRUCTURE MODEL

Trade in a market for a single stock is coordinated through a market specialist.

(The market is a dealership market in that the specialist does not act as a broker,

thus all orders are market orders.) There are an arbitrarily large number of
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potential (risk-neutral) traders, from which traders are randomly selected to meet

with the specialist. Because there are an uncountable number of traders, who have

only countably many opportunities to be selected to trade with the specialist,

almost surely a selected trader has only one opportunity to increase utility
through trade in the market. As the specialist meets with only one trader at a

time, we index traders by their order of arrival, i. (We imagine that the market

began at some time in the arbitrarily distant past, so i is an element of the integers

Z.) Concordant with the arrival of traders is the generation of a signal Si of the

intrinsic stock value.

Trade occurs over a sequence of information periods. An information period

captures the interval over which private information potentially exists, so the end

of an information period is characterized by agreement over all participants on
the value of the stock. The end of an information period thus corresponds to

public revelation of the signal, which occurs with probability d 2 (0, 1) on any

arrival. If we index information periods by m, then the value of the stock at the

end of period m is

Vm ¼ Vm�1 þ Sim ,

where im denotes the last arrival in period m (thus DVm = Sim). Because

EðSim jSim�1Þ ¼ 0,

the expected price at the next public signal conditional on the current public

signal always equals the price at the current public signal.

Private information is captured through the signals generated within an

information period. In detail, the signal takes one of three values: Si 2 {�1, 0, 1}.

(Setting the increment amount to k 2 R, rather than 1, would simply rescale

the market.) At the beginning of an information period, the price-changing

signals (Si = 1 and Si = �1) are equally likely. Only price-changing signals
correspond to news privately entering the market, so we refer to Si 6¼ 0 as

(private) news. For all arrivals during information period m, im�1 < i � im, the

arriving trader observes the signal, and so is informed, with probability �. Inclu-

sion of Si = 0 is important in determination of �. Without Si = 0, � must be small

for an illiquid stock, otherwise one could not generate long segments without

trade. With Si = 0, such sequences can be generated by less frequent trade by

uninformed traders, which allows � to reflect the increase in trading when

information is present.
The signal that informed traders observe may differ from the publicly

revealed value, and so is potentially imperfect. The evolution of the signal

over trader arrivals within an information period is governed by the transition

probabilities

M ¼
�1 �2 1� �1 � �2
1��3
2 �3

1��3
2

1� �1 � �2 �2 �1

2
4

3
5 ,
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withP(Si=1|Si�1 = 1)= y1,P(Si=0|Si�1 = 1)= y2, andP(Si=�1|Si�1 = 1)= 1� y1� y2.
The parameters y1 and y2 measure state persistence, and so capture the belief

that informed traders attach to private information. If y1 = y3 = 1, then the signal

is perfect, as in Easley and O’Hara (1992). To understand how the two persis-
tence parameters are identified, consider the effect of altering each parameter.

As y1 increases, the likelihood of news P(Si 6¼ 0) increases. In addition, the quality

of news increases, as it becomes more likely that the privately revealed value will

be the future publicly revealed value. As y3 increases, the likelihood of news

decreases, but the quality of news in unchanged. It is this asymmetry in the

behavior that identifies the two persistence parameters.

While the transition matrix M describes the evolution of the signal within an

information period, we must look across information periods to determine the
statistical properties of the stationary series. Each information period begins with

a signal that is drawn from ��, which is the stationary (unconditional) distribution

of Si. We assume that each element of �� 2 ð0; 1Þ, so that Si is generated by a

Markov process with transition probabilities

ð1� �ÞM �M
ð1� �Þ� ��

� �
,

where the (3 � 3) submatricies capture the transition if neither signal (Si,Si�1)

is publicly revealed (the submatrix (1 � d)M), only Si is publicly revealed

(dM), only Si�1 is publicly revealed ((1 � d)P, so P0 = �� � [1, 1, 1] reflects the

fact that Si is governed by �� regardless of the value of Si�1), both (Si,Si�1) are

publicly revealed (dP).

To determine the likelihood of private information, in the appendix we derive

��. Good news (Si = 1) and bad news (Si = �1) are (unconditionally) equally likely
with total probability

v � PðSi 6¼ 0Þ ¼ 1� �3
�2 þ ð1� �3Þ

:

Although the model can accommodate very general dynamics, we concentrate on

the realistic case in which the signal cannot immediately switch between the good

and bad states. So, in what follows, we assume that y2 = 1 � y1, and we have

v ¼ 1� �3
ð1� �1Þ þ ð1� �3Þ

: ð1Þ

For this case, if y1 = y3, then private information (unconditionally) arrives half the

time, v = 1
2.

In order to test whether private information is perfect (that the signal remains

constant until publicly revealed) we must test the hypothesis Ho: y1 = y3 = 0.

Unfortunately, under this restriction �� becomes arbitrary as the transition prob-

abilities no longer form an ergodic Markov chain. Nevertheless, we can nest the

perfect information hypothesis by recasting the model to include v as a parameter

instead of y3. Notice that Equation (1) is equivalent to
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�3 ¼ 1� v

1� v
ð1� �1Þ

for any y3 < 1 and any 0 � v � 1/(2 � y1). Moreover, if y1 = 1, then y3 = 1 and v

varies freely over [0,1]. When we refer to the perfect information model, we refer

to the model parameterized as y1 = y3 = 1, with v arbitrary on the interval [0,1] and

�� ¼ v
2 ; 1� v; v2
� �

.

Prior to the ith arrival, the specialist sets an ask (Ai) and a bid (Bi) for one

share of the stock. Let Di represent the random variable corresponding to the
decision of the ith trader, taking on dA, dB, or dN if the decision is to trade at the

ask, the bid, or not to trade, respectively. After each arrival, im�1 < i � im, the

specialist is aware of the entire history of trades, fDjgij¼�1, the entire history of the

public signals, fsikg
m�1
k¼�1, and the structure of the market. However, because of the

Markovian setting and preference assumptions, only a small subset of this infor-

mation is relevant to the specialist. All relevant information, other than the

structure of the market, is summarized in the public information set

Zi � Vm�1, Di, Di�1, . . . , Dim�1f g:

The information set of an informed trader includes the private signal and so is a

finer partition of the event space at the next public signal. Because the intra-

information period trade history is used by the specialist only to predict Si, an

informed trader’s information set is

fVm�1, Sig:

The specialist does not observe the private signal and so must form beliefs

about the value of the signal. Bayes’ rule governs the method by which the
specialist (and uninformed traders) learn through observing transactions. If

trader i buys the stock, then3

PðSi ¼ 1jZi�1, Di ¼ dAÞ ¼ PðSi ¼ 1jZi�1Þ
PðDi ¼ dAjSi ¼ 1Þ
PðDi ¼ dAjZi�1Þ

:

With updated beliefs, the Markov transition matrix M guides prediction of the

signal at the next arrival,

PðSiþ1 ¼ 1jZiÞ ¼ �1PðSi ¼ 1jZiÞ þ
1� �3

2
PðSi ¼ 0jZiÞ þ ð1� �1 � �2ÞPðSi ¼ �1jZiÞ:

For all future values, the specialist’s beliefs are contained in the vector

�j,i ¼
P ðSiþj ¼ 1jZiÞ
P ðSiþk ¼ 0jZiÞ
P ðSiþj ¼ �1jZiÞ

2
4

3
5,

where p0j,i = p00,iM
j.

3 The specialist’s recursion begins with the stationary probabilities.
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The central problem for all agents is to determine the value of the stock

at the public revelation, Vm. In predicting Vm, there are two interrelated

sources of uncertainty. First, the agent must predict when the public infor-

mation will arrive. To model prediction of uncertain future public news,
we define a subsequence of arrivals, fimg1m¼1; corresponding to public news.

The (random) number of arrivals until a public signal is T(i) � # {j:i < j � im}

for im�1 < i � im, where # is the number of elements in the set. Because

the arrival of public news occurs randomly with probability d, the T(i) are

i.i.d. geometric random variables with common distribution equivalent to

T, where

P½T ¼ t� ¼ ð1� �Þt� t ¼ 0, 1, 2, . . . :

Note that T(i) = 0 corresponds to public revelation of the signal (potentially)
received by the ith trader. Second, given the expected time of public informa-

tion arrival, the agent must predict the value of the stock when the value

is made public. Following the arrival of trader i, the specialist’s valuation

E (DVm|Zi) is

X1
j¼0

P½TðiÞ ¼ j�½PðSiþj ¼ 1jZiÞ � PðSiþj ¼ �1jZiÞ�:

Solution of the infinite series yields (details are in the appendix)

EðSijZiÞ �
�

1� ð1� �Þ½�1 � ð1� �1 � �2Þ�
,

which equals the expectation of the current signal multiplied by a factor

that captures the likelihood that the signal is publicly revealed. The factor

equals one only if y1 equals one, in which case the current signal is perfect

and so is revealed with certainty. We also see that the factor is an increas-
ing function of d and y1. Increasing d tends to shorten the information

period, while increasing y1 makes the current signal more informative,

both of which imply that the current signal is more likely to be publicly

revealed.

An informed trader receives Si, which supersedes the public information.

As Si does not provide information about the timing of public news, an informed

trader’s valuation differs from the specialist’s only in the prediction of the

revealed signal

X1
j¼0

P½TðiÞ ¼ j�½PðSiþj ¼ 1jSiÞ � PðSiþj ¼ �1jSiÞ�:

Solution of the infinite series yields (details are in the appendix)

Si �
�

1� ð1� �Þ½�1 � ð1� �1 � �2Þ�
,
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which equals the current signal multiplied by the factor that captures the like-

lihood of public revelation of the signal. If y1 = 1, then the valuation of an

informed trader is simply

Eð�VmjSiÞ ¼ Si:

To complete the specification of the market microstructure, we define equili-
brium by a sequence of bid-ask pairs that result in zero expected profits for the

specialist; formally, at any given arrival an equilibrium obeys

E½Vm � AijZi�1, Di ¼ dA� ¼ E½Bi � VmjZi�1, Di ¼ dB� ¼ 0,

where im�1 < i � im for all m 2 Z. We consider this an equilibrium condition

obtaining from the potential free entry of additional market specialists should the

bid and ask lead to positive expected profits.

The zero-profit equilibrium imposes constraints on the quotes. First, the

quotes always satisfy

Vm�1 �
�

1� ð1� �Þ½�1 � ð1� �1 � �2Þ�
< Bi � Ai < Vm�1 þ

�

1� ð1� �Þ½�1 � ð1� �1 � �2Þ�
,

where the lower and upper bounds are the ‘‘reservation prices’’ for an

informed trader with Si = �1 and Si = 1, respectively. For example, if the

ask exceeded the upper bound, then informed traders would never trade at
the ask and the specialist could ensure positive profit from exclusive trade

with uninformed traders. Because the quotes are bounded by the reservation

prices, the decision of the informed is summarized by the following simple

rule: Buy if Si = 1, sell if Si = �1.

We do not directly model the preferences of the uninformed, as the unin-

formed are assumed to trade for liquidity reasons rather than speculation. Because

a trader who receives the signal Si = 0 does not trade, we must allow for unin-

formed traders to elect not to trade, to avoid immediate revelation of a private
signal. Uninformed traders elect to trade with probability e. Of the proportion of

uninformed traders who trade, half buy at the ask and half sell at the bid.

To see the specific form of the quotes, note that the ask for the stock is

determined from

�PðSi ¼ 1jZi�1Þ � ½EðVmjSi ¼ 1Þ � Ai� ¼
1

2
ð1� �Þ" � ½Ai � EðVmjZi�1Þ�:

The left side is the expected loss the specialist incurs from trade with the informed

at the ask, the right side is the expected gain the specialist receives from trade

with the uninformed. The corresponding equilibrium ask is

Ai ¼
�PðSi ¼ 1jZi�1ÞEðVmjSi ¼ 1Þ þ 1

2 ð1� �Þ"EðVmjZi�1Þ
�PðSi ¼ 1jZi�1Þ þ 1

2 ð1� �Þ"
,

where E(Vm|Zi�1) equals
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PðSi ¼� 1jZi�1ÞEðVmjSi ¼ �1Þ þ PðSi ¼ 0jZi�1ÞEðVmjSi ¼ 0Þ
þ PðSi ¼ 1jZi�1ÞEðVmjSi ¼ 1Þ:

To summarize, trading evolves as follows. After a public signal, the next

signal is selected according to the dynamics of the signal process. Assuming that

this signal is not public, only the informed are aware of the signal value. A trader

is randomly selected to trade with the specialist and the signal is potentially

revealed to the trader. The trader observes the bid and ask, and decides whether
to buy or sell. After the decision of the trader, the signal is publicly revealed with

probability d. Upon observing the decision of the trader, and the possible public

revelation of the signal, the specialist must set the bid and ask that will be in effect

at the next arrival. The signal is then updated again, and the previously described

process continues until another public signal occurs.

2 ECONOMETRIC ESTIMATION

The microstructure model yields the likelihood of each trade decision Di as a
function of the parameters F = (a, d, e, y1, y3). Thus the observed trade decisions

are used to form the likelihood (function) without need of further distributional

assumptions. As the actual sequence of trade decisions is unobserved, two trans-

formations of the data are needed to construct the sequence.

The first transformation concerns the information content of elapsed time with

out trade. Within the model, the frequency of trader arrivals determines the

amount of time without trade that corresponds to a no-trade decision. To form a

sequence of trade decisions, we must specify the frequency of trader arrivals. In
doing so wemust account for the fact that, as Harris (1986), Jain and Joh (1988), and

McInish and Wood (1992) verify, trade volume exhibits significant cyclic patterns

both within a day and across days of the week. As the predictable patterns in trade

activity are likely due to the many factors affecting trade that are not captured by

the model, we must allow the arrival rate of traders to vary over time. To do so, we

construct an average number of trades for each hour of the week (allowing for both

day-of-week and hour-of-day effects).4 For each hour of the week, the number of

arrivals is assumed to be a multiple, K, of the average number of trades. (The value
of K must be large enough so that the number of arrivals always exceeds the actual

number of trades, and small enough so that traders do not arrive more frequently

than one per second.) Thus the length of time corresponding to a no-trade interval

(the time between arrivals) varies over hours.

While our ability to allow for varying arrival rates is an improvement over a

fixed arrival rate of traders, any specification of arrival rates likely introduces

misspecification bias. To determine the bias, we focus on the ratio of the assumed

number of arrivals to the recorded number of trades, which directly affects the
estimator of F. For a given interval of time, the ratio depends on the (assumed)

4 We use hourly effects, rather than a quadratic function of hours, to account for the additional effect of the

lunch hour on trade activity for the NYSE.
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frequency of arrivals and on the timing of recorded trades. Increasing the fre-

quency of arrivals increases the ratio of arrivals to trades, as the number of

recorded trades is unaffected by the assumed frequency of arrivals. As estimation

is affected by this ratio, we account for this by reporting the invariant measures
that are scaled by the arrival frequency.

The timing of recorded trades also affects the number of arrivals. If trades are

recorded at times other than integer multiples of the arrival frequency, then the

number of arrivals is increased (e.g., because two trades are recorded more

closely than the assumed arrival frequency). The following theorem details the

effects. Let L be the length of the time interval and let f � 1 be the assumed arrival

frequency in seconds (f = 0.1 indicates a trader arrives every 10 seconds). Let T be

the number of trades in the interval and A be the number of constructed arrivals,
so the bias is B ¼ T�1(A�Lf).

Theorem 1 The bias induced by the assumed arrival frequency f is

0 � B � 1:

Further,

B ! 0 as f ! 1:

Proof See the appendix.

Theorem 1 is quite intuitive. As trades are recorded to the nearest second, the

assumption that a trader arrives every second eliminates bias from the misalign-

ment between recorded trades and the arrival frequency.

While an arrival frequency of once per second eliminates bias, much of

the bias can be eliminated at less frequent arrival rates. This is useful because

the entire sequence of trade decisions is needed for estimation. To determine the
arrival frequency, and the associated length of the decision sequence, we measure

the bias relative to K. The relative bias is K�1B, which upon noting that KT = Lf

is simply given from the formula of B as K�1 A
T � K
� �

. To link the bias to estimates

of the parameters, note that T
A is the constructed probability of a trade, which is

a � + (1 � a)e. The implied relative bias is obtained by replacing T
A with

this probability, evaluated at the maximum-likelihood estimates, which yields

K�1 ð�̂�̂ þ ð1� �̂Þ"̂Þ�1 � K
� �

. We analyze the measures of relative bias to deter-

mine the value of K that balances bias reduction and computation efficiency.

The second transformation of the data arises because all trades are assumed

cleared through the specialist, so each trade is classified as buyer initiated (a trade

at the ask) or seller initiated (a trade at the bid). Because transaction records do

not indicate who initiates a trade, a classification rule must be employed. We use a

rule proposed by Lee and Ready (1991), who use the midpoint of the bid-ask

spread to classify trades. A trade above the midpoint is (classified as) buyer

initiated, a trade below the midpoint is seller initiated, and a trade at the midpoint
depends on the preceding price movement. For example, if the price of the

Owens & Steigerwald | Inferring Information Frequency and Quality 509



preceding trade is above the midpoint, then the midpoint trade represents a price

decline and is seller initiated. As consecutive midpoint trades are classified

identically (if there is no intervening price movement), such a rule can produce

artificial runs of trades on one side of the market. In fact, Lee and Radhakrishna
(2000) found that while the rule correctly classified 93% of transactions in their

test sample, only 60% of consecutive midpoint transactions were correctly classi-

fied. To mitigate this type of missclassification, we also consider both random

assignment of consecutive midquote trades and removal of midquote trades.

For the model of Section 1, in which the frequency and accuracy of private

information are unknown, the sufficient statistics for F are the entire sequence of

trade decisions and public news arrivals. [If, as in Easley, Kiefer, and O’Hara (1997),

one assumes that private information is perfect and can arrive only at fixed points in
time, then the likelihood is considerably simplified. For this case, the sufficient

statistics reduce to the number of trade decisions of each typewithin an information

period.] From a sequence of n trader arrivals (over a span ofm information periods),

the likelihood from themodel with unknown information frequency and accuracy is

L �jD1 ¼ d1, . . . , Dn ¼ dn,fijgm�1
j¼1

� �
¼ �n

i¼1PðDi ¼ dijZi�1; �Þ,

where P(D1|Z0;F) is the stationary probability distribution for the first decision in

the information period. In detail for Di = dA we have

PðDi ¼ dAjZi�1; �Þ ¼ PðSi ¼ 1jZi�1,Di ¼ dA; �Þ �þ ð1� �Þ "
2

h i
þ PðSi ¼ 0jZi�1,Di ¼ dA; �Þ½ð1� �Þð1� "Þ�

þ PðSi ¼ �1jZi�1,Di ¼ dA; �Þ ð1� �Þ "
2

h i
:

The conditional probabilities for Si are obtained directly from the learning rules

for the specialist described in Section 2. We have

PðDi ¼ dijZi�1; �Þ ¼ �0
i�1,i�1,

where the trade frequencies are captured by

�i ¼
ð1� �Þ "

2
ð1� �Þ ð1� "Þ
ð1� �Þ "

2

2
4

3
5þ �

1ðDi ¼ dAÞ
1ðDi ¼ dNÞ
1ðDi ¼ dBÞ

2
4

3
5:

Much of the motivation for carefully extending the sequential arrival micro-

structure model to a stationary setting is that it is typically not possible to identify

episodes of information asymmetry. Instead, the best that can be hoped for is that

a process governing the ongoing evolution of information asymmetries can be

identified. As a result, the econometrician has the reduced information set ~Zi�1,

which consists of only trade decisions without knowledge of the subsequence of

arrivals corresponding to public news. Burdened by the lack of knowledge about
the public news state variable, the econometrician is concerned with a state space
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that is twice as large as the state space confronting the specialist. The state space,

{0, 1} � {1, 0, �1} underpins an ergodic bivariate Markov chain. The first element,
~Si, determines whether the signal is private (1) or public (0), the second element is

Si. (The stationary distribution is ð���; ð1� �Þ��Þ, with �� the stationary distribution
for Si.) The likelihood becomes

Lð�jD1 ¼ d1, . . . ,Dn ¼ dnÞ ¼ �n
j¼1P Di ¼ dij~Zi�1; �

� �
,

where P D1j~Z0; �
� �

is the stationary probability distribution for the first trade in

the sample. We have

P Di ¼ dij~Zi�1; �
� �

¼ P ~Si�1 ¼ 0
� �

�0
i��þ P ~Si�1 ¼ 1

� �
�0
i~�1,i�1,

where

~�1,i�1 ¼
P Si ¼ 1j~Zi�1

� �
P Si ¼ 0j~Zi�1

� �
P Si ¼ �1j~Zi�1

� �
2
64

3
75:

To understand the compact expression, if public news arrives with trader i�1,

then the conditional probabilities for Si are reset to the stationary values ��. If

public news does not arrive with trader i�1, then the conditional probabilities for

Si follow from the learning rules of Section 1, with the restricted information set
~Zi. Because the public news process is i.i.d., P ~Si�1 ¼ 1

� �
¼ ð1� �Þ and

P ~Si�1 ¼ 0
� �

¼ �, so

P Di ¼ dij~Zi�1; �
� �

¼ ��0
i��þ ð1� �Þ�0

i~�1,i�1:

The score function is

@

@�
ln L ¼

XT
t¼1

@
@� f��0

i��þ ð1� �Þ�0
i��1,i�1g

Lt
,

where

@

@�
f��0

i��þ ð1� �Þ�0
i~�1,i�1g ¼ @��i

@�
��þ @ð1� ��iÞ

@�
��1,i�1

þ @

@�
��

� �
��i þ

@

@�
~�1,i�1

� �
ð1� �Þ�i:

While the terms @ð1��Þ�i

@� and @��i
@� depend only on the parameter values and trade

decisions, the term @
@� ��1;i�1 must be calculated recursively.

3 EMPIRICAL IMPLEMENTATION

We examine three interesting questions. First how long is an information period?

Many empirical specifications ofmicrostructure models assume that an information
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period is one trading day. This is in stark contrast to much of the MDH literature,

which assumes significantly shorter information periods. Second, how much trade

is information based? Easley, Kiefer, and O’Hara (1997) find that informed traders

account for less than one-third of the trades in their samples of NYSE stocks. Third,
how precise is private information? Signals are often assumed noiseless in the

microstructure literature, raising the question of how well this assumption con-

forms to the data when signal quality is estimated instead of assumed.

To answer these questions, we analyze three NYSE stocks chosen according

to their liquidity characteristics. We select International Business Machines (ticker

symbol IBM) to represent a highly liquid stock. We select Ashland (ticker symbol

ASH) to represent a moderately liquid stock.5 Finally, we select the Commerce

Insurance Group (ticker symbol CGI), a property and casualty insurer, to repre-
sent a relatively illiquid stock.

For each stock, we extract data from the first 30 trading days of 2001 (January

2, 2001 to February 13, 2001) from the NYSE Trades and Quotes (TAQ) dataset.

The TAQ dataset contain a record of every trade and quote posted on the NYSE,

the American Stock Exchange (AMEX) and the NASDAQ National Market Sys-

tem for all NYSE-listed securities. We filter the trade data to remove trades that

were recorded out of sequence, canceled, executed with special conditions, or

recorded with some other anomaly. We use quotes only from the NYSE [Blume
and Goldstein (1997) find that the NYSE quote determines or matches the national

best quote about 95% of the time]. We also filter the quote data to remove

recording anomalies.

Because of certain institutional details, occasionally large trades are broken

up into a sequence of smaller trades, all at the same price [see Hasbrouck (1988)].

In order to avoid misidentifying these sequences of same-sided trades as bursts of

informed trades, we aggregate all trades recorded within five seconds of each

other without an intervening price change or quote revision.
The data are further filtered to remove time stamps outside of the official

trading hours of the NYSE (9:30 A.M. to 4:00 P.M.). Finally, the first half hour of each

trading day is removed in order to avoid modeling the market opening of the

NYSE, which is characterized by heavy activity following the morning call auc-

tion. As Harris (1986), Engle and Russell (1998), and many other authors have

noted, the first half hour of trade exhibits substantially different properties than

the rest of the day.

We investigate the potential bias from sequences of mid quote trades that are
assigned the same initiator type. Fortunately, relatively few of the trades in our

dataset are part of mid quote sequences. For ASH, CGI, and IBM, 0.32%, 0.26%,

and 0.88% were consecutive mid quote trades without a price change, respec-

tively. Neither randomly assigning these few mid quote trades nor removing

them from the sample had a significant effect on estimated parameters. Conse-

quently we report estimates based on the unmodified Lee and Ready approach.

5 Ashland Oil Incorporated, also studied by Easley, Kiefer, and O’Hara, changed its name to Ashland

Incorporated in 1995.
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After filtering the data and assigning trader initiation, we remove periodic

features from the data. In detail, we first regress the number of trades for each

hour on day-of-week and hour-of-day indicators. The parameter estimates are

given in Table 1, where starred items are significant at the 5% level and double-
starred items are significant at the 1% level. (Hour-of-day indicators are labeled

according to the beginning of the hour they correspond to, so 11 A.M. takes on

1 over the interval 11 A.M. to 12 P.M.) We determine the arrival frequency for each

hour of the week by dividing the predicted number of arrivals in the hour (the

predicted number of trades multiplied by K) by 3600 seconds. The arrival fre-

quency, in turn, determines the length of time between arrivals, and whenever

this length of time elapses without a trade, we record a no-trade.

Once the periodic features of the data are removed, we record the effective
number of arrivals by adding the number of trades to the number of constructed

no-trades. The realized relative bias is then given by K�1 A
T � K
� �

. With the max-

imum-likelihood estimates constructed from the sequence of trader decisions, the

implied relative bias is K�1 �̂�̂ þ ð1� �̂Þ"̂Þ�1 � K
h i

.

In Figure 1, we plot the realized and implied relative bias as K varies from 2 to

20 for ASH. It is clear that the realized and implied relative biases are essentially

identical, demonstrating that parameters are biased by incorrectly classifying

no-trade decisions. As the figure indicates, increasing K from 2 to 10 decreases

Table 1 Regression of the hourly number of trades against hour-of-week regressors
(SEs in parentheses).

Coefficient ASH CGI IBM

INTERCEPT 52.406�� 9.614�� 755.106��

(3.343) (1.358) (44.886)

TUE �0.229 0.419 �15.395

(3.233) (1.312) (43.404)

WED �0.022 0.161 60.367

(3.343) (1.357) (44.886)

THR 1.978 �0.439 159.894��

(3.343) (1.366) (44.886)

FRI 2.617 �0.283 78.672

(3.343) (1.357) (44.886)

11AM �14.200�� �2.867� �113.900�

(3.492) (1.417) (46.882)

12PM �21.200�� �2.433 �295.767��

(3.492) (1.417) (46.882)

1PM �17.367�� �1.787 �258.467��

(3.492) (1.430) (46.882)

2PM �13.433�� �0.933 �145.233�

(3.492) (1.417) (46.882)

3PM 5.567 6.533�� 21.533

(3.492) (1.417) (46.882)

R2 0.351 0.264 0.367
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the relative bias from 25% to 5%. Further increases in K have little effect on the

bias. Consequently we choose K = 10 for the results reported on ASH and the CGI.

For IBM, we choose K = 2 to avoid having effective arrivals too close together (on

Thursdays between 3 P.M. and the close, trades occur, on average, less than 4

seconds apart).

Because we are constrained in the choice of K for IBM reported results tend

to overestimate the time between events. For example, the estimated time

between trades and the time between information arrivals are biased upward.
However, many interesting estimates are largely invariant to the choice of K.

Figure 2 shows that, for ASH, the estimated probability of informed trade as

measured by �̂�̂=ð�̂�̂ þ ð1� �̂Þ"̂Þ and the expected probability of informed trade

given the presence of private information, as measured by �̂=ð�̂þ ð1� �̂Þ"̂Þ,
where the hats indicate maximum-likelihood estimates, change little as K varies.

This is an intuitive result; the biases of the estimated probability of informed

trade and of uninformed trade tend to offset each other in measurements that

include their ratios.
Having settled the implementation issues, we next turn to estimating the

model and testing information quality. Table 2 lists the parameter estimates for

ASH.
6 The first item that stands out is that information quality is estimated to be

very high. The chi-square statistic for the likelihood ratio test of H0: �1 = �3 = 1 has

one degree of freedom and is not significant at the 10% level. Moreover, the

shared parameter estimates are almost identical between the two models (SEs in

parantheses). From the pattern that emerges, information periods correspond to

short bursts of 7ð�̂�1 ¼ 6:8Þ arrivals. Roughly 40% of the bursts are associated with

private information ð�̂ ¼ 0:41Þ and within a burst 14% ð�̂ ¼ :14Þ of the traders are
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Figure 1 Realized and implied relative biases as functions of K.

6 As described in Section 1, for the unrestricted model, � is determined by � ¼ 1��3
ð1��1Þþð1��3Þ. The standard

errors � reported in Table 2 are derived by the delta method.
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informed. While the remaining 86% of arrivals are associated with uninformed
traders, such trade is infrequent as uninformed arrivals result in trade less than

5% of the time (ð"̂ ¼ 0:04Þ. As a result, price movements during bursts are heavily

influenced by informed traders, with 80% of trade attributed to the informed

0:14
0:14þ0:86:004 ¼ 0:80
� �

. Even though bursts occur less than half the time, the remain-

ing periods see very little trading (as the uninformed trade infrequently). The
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Figure 2 Probability of informed trade.

Table 2 Maximum-likelihood estimates of the restricted and unrestricted models.

ASH

Coefficient Restricted Unrestricted

a .143097

(.005008)

.143133

(.005370)

n .411310

(.021685)

.412034

(.017239)

e .042826

(.002314)

.042823

(.002453)

d .146922

(.008310)

.146738

(.018375)

y1 1

(N/A)

.999601

(.016371)

y3 1

(N/A)

.999721

(.011461)

Log likelihood �30,343.47 �30, 342.59

w2 0.88
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probability of informed trade (PIN), which is the overall share of trading attrib-

uted to the informed, is slightly more than 60% 0:41�0:14
0:41�0:14þ0:86�0:04 ¼ 0:63
� �

. Finally,

translating the bursts into clock time, we find that during active times in the
market (such as the first hour, 10–11 A.M., on Monday) a trader arrives roughly

every 7 seconds, so a burst lasts only 50 seconds. As a result, a burst occurs (i.e.,

private information potentially arrives) roughly every 2 minutes 49 sec
0:41

� �
.

Many of the results for ASH carry over to the case of a far less liquid stock.

Estimated information quality for the CGI is also very high (see Table 3). Trade

bursts now correspond to only three arrivals and are far less prevalent (occurring

only 17% of the time). Given the less frequent arrival of bursts, it is perhaps not

surprising that only 30% of the traders are informed. As the uninformed again

trade only 5% of the time, the frequency of informed trade within a burst is nearly
90%. Because bursts are rarer, the larger probability of informed trade within a

burst plays a smaller role and the overall probability of informed trade remains at

roughly 60%. During an active market hour, a trader arrives every 40 seconds, so

a burst lasts 2 minutes and bursts occur every 10 minutes. Thus CGI is character-

ized by relatively rare, but quite potent, bursts of trade.

In contrast, the liquid stock IBMhas bursts that arrive quite frequently, 75%of the

time, and last for 14 arrivals. Within a burst, roughly 20% of the traders are informed.

Yet, because the uninformed trade with much greater frequency (30%), the overall
impact of informed trade is substantially lower: 50% within a burst and 35% overall.

Finally, during an active market hour a trader arrives every 2 seconds, so bursts last

just under 30 seconds and occur (on average) every 40 seconds.

Our results differ from previous empirical work by Easley, Kiefer, and

O’Hara (1997), who assume that information arrives at most once per day and

Table 3 Maximum-likelihood estimates of restricted and unrestricted model for CGI.

CGI

Coefficient Restricted Unrestricted

a .312000

(.029530)

.312002

(.029559)

n .173258

(.027062)

.173158

(.019422)

e .055401

(.008384)

.055402

(.008387)

d .361355

(.033811)

.361358

(.034561)

y1 1

(N/A)

.999805

(.017933)

y3 1

(N/A)

.999959

(.003754)

Log likelihood �6506.96 �6505.30

w2 1.66

516 Journal of Financial Econometrics



takes a full day for the market to absorb. In contrast, we find that information

potentially arrives many times within an hour. Moreover, information is quickly
absorbed by the market, often in a matter of minutes. In an appendix to the Web

version of this article [Owens and Steigerwald (2004)], we detail how misspecifi-

cation of the information arrival frequency leads to biased parameter estimates.

One fact that emerges clearly is that, regardless of liquidity, stock trades are

characterized by frequent bursts of trade activity. As these bursts are short, trade

activity is typically one-sided (i.e., clustered at either the ask or bid), so informa-

tion is always estimated to be very accurate. As a consequence, we set �1 = �3 = 1

in what follows.

3.1 Time-Varying Parameters

In the above analysis, the length of time between trader arrivals and the expected
time to a burst of trading vary over the course of the day. Yet other interesting

features, such as the probability of informed trade, are not allowed to vary. Recent

work by Madhavan, Richardson, and Roomans (1997) and Foster and Viswanathan

(1993) find interesting variation in the information content of trades within the day.

To capture some of this richer detail, we allow the parameters to vary by time of

day (we also allow the parameters to vary by day-of-week).7 In addition, we expand

the scope of our investigation, both by includingmore stocks andmore trading days.

We reestimate the model for 27 Dow Jones Industrial stocks traded on the NYSE for

Table 4 Maximum-likelihood estimates of restricted and unrestricted model.

IBM

Coefficient Restricted Unrestricted

a .233794

(.001777)

.259330

(.002337)

n .759209

(.006302)

.545455

(.004844)

e .294319

(.001787)

.338974

(.002311)

d .069861

(.001607)

.103751

(.002891)

y1 1

(N/A)

.999999

(.00001)

y3 1

(N/A)

.999999

(.00001)

Log likelihood �277,946.38 �277,547.97

w2 398.41

7 In estimating the model for separate time periods, the sample consists of noncontinguous segments (e.g.,

the first half hour of a given Monday is followed by the first half hour of the following Monday). We

initialize the prior distribution of the state variable at the beginning of each segment.
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all full trading days in 2002.8 We filter the data as reported above, with two excep-

tions. First, as we allow the parameters to vary over the course of the day we do not

need to remove a cyclicpattern in trade. Second, as all 27 stocks are liquid,weassume

that a trader arrives every second, which in essence is the limiting value of K.

We divide each trading day into 13 half-hour periods (the opening half-hour

is now included) and estimate the model separately for each of these periods.9 In

Table 5 we present the overall distribution of the parameter estimates. (For each

parameter there are 27 estimates for each of the 65 periods. For each of the following
tables, there is little evidence of asymmetry as the median virtually equals the mean

and is not reported.) The estimated values of � and � are quite similar to the above

estimates, indicating that the frequency and length of bursts of one-sided trading is

relatively constant. As one would expect, the estimates of the probability of trade

(either by the informed, �, or the uninformed, ") have declined from those reported

earlier for IBM. This follows from the more frequent arrival of traders, as the

parameters now represent the probability of trade for one-second intervals. We

find the probability of informed trade to be between 49% and 61%.
In columns 2–4 of Table 6 we display the results of the probability of informed

trade over the course of Monday. Column 3 contains the mean estimate for all 48

Mondays in the sample. For the opening period, if we subtract 0.05 from the mean

estimate we obtain the lower quartile of the estimates. In similar fashion, if we add

0.06 to themeanestimateweobtain theupper quartile. Thepattern across theperiods

of the day indicates that the distribution of estimates is roughly symmetric about the

mean. (The remaining days of the week exhibit a similar pattern.) The first half hour

contains the highest probability of informed trade. There is a continued decline in
informed trade through 1:30 P.M. followed by a slight increase through 3:30 P.M., with

a substantive drop in the last half hour. (With less finely aggregated periods,

Madhavan, Richardson and Roomans (1997) find that a measure of the information

content of trades is highest early in theday,declines through2:00 P.M. and is relatively

constant through the end of the day. Similarly, Foster and Viswanathan (1993) find

Table 5 Overall distribution of parameter estimates.

Coefficient Lower quartile Mean Upper quartile

� .0589 .0726 .0834

� .6790 .7398 .7926

" .0345 .0489 .0607

� .0264 .0319 .0369

PIN .4903 .5510 .6068

8 There are 30 stocks in the Dow Jones Industrial Average. Two (Microsoft and Intel) do not trade on the

NYSE. Hewlett-Packard merged with Compaq during the sample and so is also excluded. The 27 firms

we include are listed in the appendix.
9 We discard the first trade of the day, as this trade alone arises from an auction. All stocks opened within

22 minutes of 9:30 A.M. Excluding the 10 days on which a stock took more than 15 minutes to open made

no material difference to the results. Therefore no days are removed from the analysis.
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that the information content of trades is high early in the day, declines through

midday and then increases in the afternoon.) The estimated diurnal pattern in

informed trade provides evidence that informed trading is most pronounced early

in the trading day. To determine if we are correctly attributing bursts of trade to
informed traders, we study the price impact associated with each period.

3.2 Weighted-Price Impact

If a trade really is due to information, then the price impact of that trade should

persist. Thus if the estimates of PIN are capturing information, then periods with
a large PIN estimate should have persistent price impacts. To measure the

persistence of price impacts, we follow Barclay and Hendershott (2003) and

construct the weighted-price contribution (WPC) of the return for each period.

In detail, for period i on trading day j,

WPCij ¼
X27
s¼1

jrjsjP27
s¼1 jrjsj

 !
rijs

rjs

� �
,

where s indexes each stock. The first component reflects the contribution of stock j to

the daily return rjs (which equals
P13

i¼1 rijsÞ: The second component reflects the con-

tribution of period i to the daily return for stock s. Large values of WPCij refer to
periodswith persistent price impact. In columns 5–7 of Table 6wepresent estimates of

theWPC forMonday. The largest price contribution,which is theperiodwith themost

persistent innovation to price, is the opening half hour. In parallel to the estimates of

informed trade probabilities, the price contribution declines sharply through 2:00 P.M.,

before climbing slightly to a rather constant level for the remainder of the day.

Table 6 Measures of informed trade over Monday. (LQ = -0.05 - subtract 0.05. to
obtain lower quartile, UQ = +0.06 - Add 0.06 to obtain upper quartile.)

PIN WPC

Period LQ Mean UQ LQ Mean UQ

9:30-10.00 �.05 .5880 +.06 �.12 .2346 +.14

10:00-10:30 �.05 .5806 +.06 �.11 .1614 +.15

10:30-11:00 �.06 .5801 +.06 �.09 .1066 +.07

11:00-11:30 �.08 .5567 +.05 �.06 .0638 +.05

11:30-12:00 �.06 .5466 +.04 �.05 .0607 +.09

12:00-12:30 �.06 .5337 +.07 �.06 .0456 +.05

12:30-1:00 �.06 .5324 +.07 �.07 .0204 +.07

1:00-1:30 �.07 .5280 +.04 �.07 .0207 +.06

1:30-2:00 �.06 .5338 +.05 �.08 .0155 +.08

2:00-2:30 �.07 .5393 +.07 �.07 .0667 +.06

2:30-3:00 �.06 .5445 +.07 �.08 .0676 +.06

3:00-3:30 �.07 .5359 +.04 �.08 .0764 +.08

3:30-4:00 �.05 .4577 +.04 �.07 .0600 +.06
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While the measures confirm that the estimates of informed trade reflect

persistent price impacts, there is still the question of the level of informed trade.

Because the estimates of informed trade are driven by bursts of one-sided trade,

any forces at work that lead to trade clustering influence the estimates. In practice,
forces such as the division of large block trades into a sequence of smaller trades

invariably create upward bias in the estimates of informed trade.

To gauge the magnitude of the bias, we use changes in the weighted-price

contribution over the day. We first decompose the PIN estimate into a component

that reflects informed trade (I) and a noise component arising from other forces

(N), PINi = Ii + Ni. If the noise component is roughly constant over the course of

the day, then changes in PIN reflect changes in information,

PIN1 � PIN13 ¼ I1 � I13:

Information changes are also reflected in changes in WPC. From Table 6, the

weighted-price impact in the closing period is only 26% 0:06
0:2346 ¼ 0:2558
� �

of the impact

for the opening period. If WPC and PIN are linearly related, then a change in WPC

should lead to a proportionate change in the trade arising from information. With the

average value of each of the 65 periods, we find the fitted value of WPC to be

�0:46
ð0:11Þ þ 0:97

ð0:20Þ PIN:

Given the linear relation in the two information measures, I13 = 0.2558I1. As PIN1 –
PIN13 = 0.1303 from Table 6, it follows that I1 = 0.1751 and N = 0.4129. This rough

bias adjustment leads to estimates of informed trade contribution that are sub-

stantially smaller: 18% for the opening period and 4% for the closing period.

4 CONCLUSION

In this article we develop and estimate a microstructure model that allows for

estimation of both the frequency and quality of private information. The fre-

quency of private information is captured through the potential revelation of

the information at each arrival. The length of time prior to revelation follows a

geometric distribution and the parameter of this distribution characterizes the

frequency of information. The quality of private information is captured with a

Markov transition matrix; information that is likely to be publicly revealed is of

high quality.
Construction of the trade decision sequence depends on two classification

algorithms. We show the potential bias that results from each of the algorithms.

For the no-trade classification algorithm, we prove that the bias shrinks as the

arrival frequency approaches the time scale on which trade is resolved. The

ability to estimate the frequency and quality of information is not without cost.

The sufficient statistic for the microstructure parameters is the entire sequence of

trade decisions, in contrast to the case in which the frequency and quality are

assumed known, for which the sufficient statistics are simply the number of
trades of each type.
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With recent data from the NYSE, we examine the characteristics of private

information. For stocks of widely varying liquidity, the answer is surprisingly

robust, high-quality information potentially arrives frequently and trading reveals

the information quickly. These results pose a challenge to previous microstructure
studies in which information is assumed to arrive at most once per day. Our

finding of frequent information arrival allows one to rigorously underpin tests of

the mixture-of-distributions hypothesis, in which information is assumed to arrive

frequently, with a microstructure model.

APPENDIX

A.1 Calculation of the Stationary Distribution

The stationary probabilities for the private signal are the values of �� such that

M0�� ¼ ��. If y1 and y3 do not equal one, then the stationary probability vector is the

eigenvector of M0 that corresponds to an eigenvalue of one. In detail, we first note

that |M0 � I3| = 0, where I3 is the 3 � 3 identity matrix, so that one is an

eigenvalue of M0. The corresponding eigenvector, ��, satisfies

ðM0 � I3Þ�� ¼ 0:

From the first and third equations in the system, it follows that ��1 ¼ ��3 ¼ c. From

the first equation,

��2 ¼
2�2

1� �3
c:

Because the three stationary probabilities sum to one,

2cþ 2�2
1� �3

c ¼ 1, so c ¼ 1� �3
2 �2 þ ð1� �3Þ½ � :

Hence ��2 ¼ �2
�2þð1��3Þ. Because �� derived in the preceding displayed equation is

a stationary distribution if y1 = y3 = 1 (although the stationary distribution is not

unique for this case), we assume the derived �� forms the initial distribution

following public news for all values (y1, y3). The formula displayed in the text is

arrived at by noting y2 = 1 � y1.

A.2 Stock Valuation

The specialist’s valuation E(DVm|Zi) is

X1
j¼0

P½T ðiÞ ¼ j��0
j,is

with s = [1, 0, �1]0. As noted in the text, P[T (i) = j] = d(1 � d)j and p0j,i = p00,iM
j.

Thus
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Eð�VmjZiÞ ¼
X1
j¼0

� ð1� �Þj �0
0,iM

js

¼ ��0
0,i

X1
j¼0

½ð1� �Þ M�j � s

¼ ��0
0,iðI � ð1� �Þ MÞ�1 s:

Now,

ðI � ð1� �Þ MÞ ¼
a b � � a� b
c � � 2c c

� � a� b b a

0
@

1
A

where a = 1 � (1 � d) y1, b = � (1 � d) y2, and c ¼ � 1
2 ð1� �Þ ð1� �3Þ. From matrix

algebra ðI � ð1� �Þ MÞ�1 s ¼ ð1;0;�1Þ0
ð2a��þbÞ, so

��0
0,i ðI � ð1� �Þ MÞ�1 s ¼ � � PðSi ¼ 1jZiÞ � PðSi ¼ �1jZiÞ

1� ð1� �Þ½�1 � ð1� �1 � �2Þ�

¼ EðSijZiÞ
�

1� ð1� �Þ½�1 � ð1� �1 � �2Þ�
:

To obtain the valuation of an informed trader, E (DVm|Si), simply replace the

specialist’s information set with the signal. Thus

E ð�VmjSiÞ ¼ � � P ðSi ¼ 1jSiÞ � P ðSi ¼ �1jSiÞ
1� ð1� �Þ½�1 � ð1� �1 � �2Þ�

¼ Si �
�

1� ð1� �Þ½�1 � ð1� �1 � �2Þ�
:

Proof of Theorem 1 The arrival time of trader i is given by

�i ¼ �i�1 þmin ðf�1, gÞ,

where g is the elapsed time to the first recorded trade since � i�1 and �0 is the

beginning of the interval. If all recorded trades are at integer multiples of f�1, then

A = Lf. If some recorded trades are not at integer multiples, then for at most T
arrivals, � i � � i�1 < f. As a result, A � Lf + T, so

B ¼ A

T
� Lf

T
� T

T
:

As trades cannot be less than one second apart, if f = 1, then � i � � i�1 = f �1 for all

arrivals and B = 0.

A.3 Firms Included in the 2002 Analysis

The Dow Jones Industrial firms (together with their ticker symbols) used for the
analysis of data from 2002 are
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